

Rachel Mills Amy Stone Joshua Stone (PM)

Structural System Design

Submittal A

TABLE OF CONTENTS

Project Location Information2
Design Criteria2
Structural System Narrative
Design Loads5
Snow Loads6
Wind Loads7
Seismic Loads
Appendix A: Supplemental Loading Information11
Appendix A.1: Seismic Parameters
Appendix A.2: Building Load Requirements17
Calculations:

PROJECT LOCATION INFORMATION

The building shown in Figure 1 is located in Laramie, Wyoming with a latitude and longitude of 41.3108° N, -105.5903° E. This building will be designed as an office building.

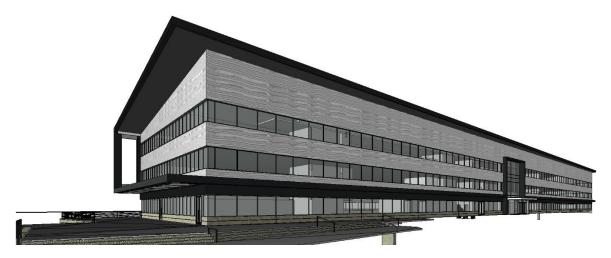


Figure 1. Framing Plan for Structural Design.

Design Criteria

The building is to have three stories above grade. The first story is 14-ft high, the second and third stories are 13-ft and 6-in high, and there is an 8-ft tall roof screen wall on a 1:12 sloped roof. The soil site class was determined to be site class D. The building will be designed per ASCE 7-10. The building is to be framed with steel bracing on a concrete foundation and steel K-bar joists supporting the non-mechanical roof load. In the longitudinal direction, the lateral resisting system will be steel and concrete composite ordinary moment frames. In the transverse direction, the lateral resisting system will be steel and concrete composite ordinary braced frames.

Structural System Narrative

1. Executive Summary

- A. The building is to be framed with steel bracing on a concrete foundation and steel K-bar joists supporting the nonmechanical roof load.
- B. In the longitudinal direction, the lateral resisting system will be steel and concrete composite ordinary moment frames. In the transverse direction, the lateral resisting system will be steel and concrete composite ordinary braced frames.

2. Building Code

- A. The governing building code for the Project will be the 2015 International Building Code. The fundamental design criteria are anticipated to be as follows:
 - 1) 2015 International Building Code
 - 2) ASCE 7-10

3. Loading & Design Criteria

A. Roof Snow Loads:

Β.

C.

1)	Design Roof Snow Load	= 30 psf (Control of Laramie WY, Building Codes Appendix A.2)
2)	Flat Roof Snow Load	= 23.1 psf
3)	Snow Exposure Factor (Ce)	= 1
4)	Importance Factor (I)	= 1.1
5)	Thermal Factor (Ct)	= 1
6)	Ground Snow Load (Pg)	= 30 sf
7)	Rain on Snow Surcharge	= Na
8)	Sloped Roof Factor (Cs)	= 1
Wind [Design Data:	
1)	Basic Wind Speed	= 115 mph
2)	Mean Roof Height	= 47.5 ft
3)	Risk Category	= 11
4)	Exposure Category	= C
5)	Enclosure Classification	= Enclosed building
6)	Internal Pressure Coeff. (Cp)	=5
7)	Directionality (Kd)	= .85
8)	Topographical Factor (Kzt)	= 1
Eartho	juake Design Data:	
1)	Risk Category	= 11
2)	Importance Factor (I)	= 1.25
3)	Mapped Spectral Response Acce	lerations:
	a) Ss	= .218 g
	b) S1	= .065 g
4)	Site Class	= B
		3

5) Spectral Response Coef.:

- Sds = 2.32 g a)
- b) Sd1 = .104 g
- 6) Seismic Design Category
 - = Building Frame Systems

= B

- **Basic Structural System** 8) Seismic Resisting System

- = Steel braced frames not specifically detailed for seismic resistance = 775 Kips
- 9) Design Base Shear V 10) Seismic Response Coef. (Cs) = .0750
- 11) Response Mod. Factor (R) = 3
- 12) Analysis Procedure = ELF

D. Design Loads:

7)

1)	Dead Load	= 85 psf
2)	Live Load at Elevated Floors	= 80 psf
3)	Mechanical Loads	= 20 psf

New Structure 4.

The proposed structural systems described below: Α.

Β. Foundation:

- The foundation will be constructed of conventional shallow spread footings. 1)
 - Allowable bearing pressure of 3000 psf. a)
 - b) Frost depth is at 36".
 - c) Spread footings will be a minimum of 24" square.

C. Lateral System:

- 1) Steel and Concrete Composite Ordinary Moment frames (longitudinal; response modification factor =3)
 - A frame in which members and joins resist lateral forces by flexure and along the axis of the a) members. (ASCE7-10, Section 11.2)
- 2) Steel and Concrete Composite Ordinary Brace frames (transverse; response modification factor =3)
 - An essentially vertical truss, or is equivalent, of the concentric or eccentric type that is provided in a a) building frame system or dual system to resist seismic forces. (ASCE-10, Section 11.2)
- Floor Framing: D.
 - First floor framing is slab on grade concrete and decking. 1)
 - 2) All upper floors will be composite decking supported by steel framing.
- E. **Roof Framing:**
 - For sub-mechanical area, the roof will be composed of composite decking supported by steel framing. 1)
 - Non-mechanical sloped roof will be supported by open-web steel joists. 2)

Design Loads

	Dead Loads:									
Roof	Dead Load	Flo	or Dead Load	Wall De	ead Load	Mech B	Зау			
Load (psf)	ltem	Load (psf)	ltem	Load (psf)	Item	Load (psf)	Item			
12.0 20.0	Roofing Ceiling + Mech	10.0 15.0 45.0	Partitions Ceiling +Mech 2 VLI 4.50 (pg.54)	35.0	Exterior Cladding	150	MB			
47.0	:Total	85.0	:Total	35	:Total	150	:Total			
Structura	al Load Estimate=	15	psf							

s:

Roof L	ive & Snow.	Floor Live					
Load (psf)	Item	Load (psf) Item		Load (psf)	ltem	Load (psf)	Item
20.0 30.0	Ordinary Roof Snow	50.0 80.0 15.0	Offices Corridors Partitions				

30.0 :Control 80.0 :Control

Lateral Loads:

Wi	nd Loads	Seismic Loads					
Load (psf)	ltem	Load (psf) Item		Load (psf)	ltem	Load (psf)	Item
182 691	EW Direction NS Direction	681 775	Longitudinal Direction Transverse Direction				
691	:Control	775	:Control				

Snow Loads

	Snow Design							
Wind Load Parameters	5							
Ground Snow								
Load	p _g =	30.000	psf					
Surface								
Roughness	SR=	С		(26.7.2)				
Importance factor	I _s =	1.100		(1.5-1)				
Exposure Factor	C _e =	1.000		(7.3-1)				
Thermal Factor	C _t =	1.000		(7.3-2)				
					(C _s of 1.0 is			
Slope Factor	C _s =	1.000		(7.4-1)	conservative)			
Roof Slope	Rs=	1:12						
		4.8	degrees					
Flat Roof Snow					30 Psf Controls for			
Load	p _{f=}	23.1	psf <	30	Laramie			
Minimum SL Low-			<i>.</i>					
Slope	p _m =	22.0	psf					
Sloped Roof SL	p _s =	23.1	psf					
Drift Coefficient	λ=	17.9	<= 30 psf					
Height Balanced		4.2	<u>(</u>)		2			
SL	h _b =	1.3	ft	h _c =				
Height Drift	h _d =	0.6	ft	l _u =	30 ft			
Drift Width	dW=	2.6	ft					
Base Snow Load	w _b =	23.1	psf					
Drift Snow Load	w _d =	11.6	psf					
Rain on Snow								
Surchage	r _s =	NA	psf					
00.0.000	• 5		1- e .					

Wind Loads

Wind	Design
------	--------

Wind Load Parameters			
Basic Wind Speed	V=	115	mph
Surface Roughness	=	С	(26.7.2)
Ground Elevation	=	0	ft
Ground Elevation Factor	Ke=	1	(26.9)
Topographic Factor	Kd=	0.85	(26.6-1)
Basic Velocity Pressure	Kzt=	1	(26.8.2)

Geometric and Wind Pressure Parameters

Geometric a	nd Wind Pressu	re Parameters		(26.1.2)		
	Height	Elevation		qz	qh	Trib H.
Level	(ft)	(ft)	Kz	(psf)	(psf)	(ft)
Parapet	0	0	1.29	37	37	0.0
R	0	0	1.27	37	37	0.0
8	0	0	1.248	36	37	0.0
7	0	0	1.21	35	37	0.0
6	0	0	1.155	33	37	0.0
Screen	8.8	52	1.11	32	37	4.4
R	12.6	39.4	1.045	30	37	10.7
3	11.9	27.5	0.97	28	37	12.3
2	13.5	14	0.85	24	37	12.7
1	0	0	0.85	24	37	7.0
Level	46.8					

Wind Strength-Level Story Forces (k)

EW Direction				NS Di	ection			
L/B=		3.19		L/B=			0.31	
Leeward Cp=		-0.325	(27.3-1)	Leewa	ard Cp=		-0.5	(27.3-1)
Trib. B	Trib. A	Net p	F	Trib	. В	Trib. A	Net p	F
(ft)	(sf)	(psf)	(k)	(ft	:)	(sf)	(psf)	(k)
113.8	0	42	0		363.2	0	48	0
113.8	0	41	0		363.2	0	48	0
113.8	0	41	0	3	363.2	0	47	0
113.8	0	40	0	3	363.2	0	46	0
113.8	0	39	0	3	363.2	0	45	0
113.8	502.6167	38	19	3	363.2	1604.133	44	71
113.8	1219.557	36	44	3	363.2	3892.293	43	166
113.8	1394.05	34	48		363.2	4449.2	41	182
113.8	1445.26	32	46	:	363.2	4612.64	38	176
113.8	796.6	32	25		363.2	2542.4	38	97
		Total	182	Wind Base Shear Fo	orce		Total	691

Seismic Loads

Seismic Design

Longitudinal Direction						
Ground motion parameters						
Mapped MCER short						
period		Ss =	0.218	g		
Mapped MCER 1-s period		S1 =	0.065	g		
Soil site class		=	D			
Short period site coeff.	(Table-11.4-1)	Fa =	-			
Long period site coeff.	(table-11.4-2)	Fv =	-			
MCE short spec. accel.		SMs =	0.349	g		
MCE 1-s spec. accel.		SM1 =	0.156	g		
DBE short spec. accel.		SDs =	0.232	g		
DBE 1-s spec. accel.		SD1 =	0.104	g		
ELF procedure parameters						
Seismic Design Category		SDC =	В		Table	12.8-2
Response modification						
factor		R =	3.00		T _a =C	t*h ⁿ x
Fundamental period		T _a =	0.661	S	h _n =	52
Long-period transition		TL =	4	S	C _t =	0.028
Importance factor		I _e =	1.25		x =	0.8
Exponent for fund. period	(12.8.3)	k =	1.080			
Max seismic response		Cs,max				
coeff.		=	0.066		Low Chec	k 12.8.1.1
Min seismic response		Cs,min				
coeff.		=	0.013		0.01276	
Seismic response coeff.		Cs =	0.066			

					Trib.				
Sei	smic weigh	nt calcula	tions		Н		Area (ft ²)		
	Unif. Dead	l Load (ps	sf)	Level	(ft)	Roof	Floor	Wall	
Roof	Floor	Wall	Parapet						
50	85	35	0						
Unit	f. Live Load	(psf)							
Roof	Floor	-	_						
20	80	-							
			-	R	12.3	41310.2		11689.23	
				3	12.7		41310.21	12118.45	
				2	13.8		41310.21	13115.21	
								Total:	

ELF strength-level seismic story forces (k)								
Level	Elevation (ft)	w_xh_x^k (k-ft)	Cv _x	F (k)				
R	39.4	131000	0.38	261.62				
3	27.5	141233	0.41	282.06				
2	14.0	68709	0.20	137.22				
		340943	1.00	681				
		V=	681	Kips				

Fransverse Direction						
Ground motion parameters						
Mapped MCER short						
period		Ss =	0.218	g		
Mapped MCER 1-s period		S1 =	0.065	g		
Soil site class		=	D			
	(Table-11.4-					
Short period site coeff.	1)	Fa =	-			
	(table-11.4-					
Long period site coeff.	2)	Fv =	-			
MCE short spec. accel.		SMs =	0.349	g		
MCE 1-s spec. accel.		SM1 =	0.156	g		
DBE short spec. accel.		SDs =	0.232	g		
DBE 1-s spec. accel.		SD1 =	0.104	g		
LF procedure parameters						
Seismic Design Category		SDC =	В		Table	12.8-2
Response modification						
factor		R =	3.00		T _a =C	t*hn [×]
Fundamental period		T _a =	0.58	S	h _n =	51.91667
Long-period transition		TL =	4	S	C _t =	0.03
Importance factor		I _e =	1.25		x =	0.75
Exponent for fund. period	(12.8.3)	k =	1.040			
Max seismic response						
coeff.		Cs,max =	0.075		Low	Check
Min seismic response						
coeff.		Cs,min =	0.013		0.01276	
Seismic response coeff.		Cs =	0.075			

Sei	smic weigh	nt calculat	ions			Trib. H		Area (ft ²)		
	Unif. Dead	Load (ps	f)		Level	(ft)	Roof	Floor	Wall	W (I
Roof	Floor	Wall	Parapet	_						
50	85	35	0							
Uni	f. Live Load	(psf)								
Roof	Floor	-	_							
20	80	-								
			-		R	12.3	41310.2		11689.23	247
					3	12.7		41310.21	12118.45	393
					2	13.8		41310.21	13115.21	397

		Z	13.8		41310.21	13115.21	3970
						Total:	10381
ELF	strength-leve	l seismic st	ory force	es (k)	_		
	Elevation	w _x h _x ^k	Cv _x	F			
Level	(ft)	(k-ft)		(k)			
R	39.4	113012	0.38	293.59			
3	27.5	123616	0.41	321.13			
2	14.0	61793	0.21	160.53	_		
		298421	1.00	775	-		
		V=	775	Kips]		

Longitudinal Direction=	113.8	ft
Transverse Direction=	363.2	ft
Screen Wall Height=	8.9	ft
Wall Perimeter=	953.8	ft

Roof	Dead Load	Floor	Dead Load	Wall De	ad Load	Parapet Dead Lo	
Load (psf)	ltem	Load (psf)	Item	Load (psf)	Item	Load (psf)	ltem
15.0 20.0	Roofing Ceiling + Mech	10.0 15.0 45.0	Partitions Ceiling +Mech 2 VLI 4.50 (pg.54)	35.0	Exterior Cladding	NA	Cladding Wall
50.0	:Total	85.0	:Total	35	:Total	0	:Total
Structural	Weight Guess=	15	psf				

APPENDIX A: SUPPLEMENTAL LOADING INFORMATION

APPENDIX A.1: SEISMIC PARAMETERS

ASCE 7-10 Standard (41.31086°N, 105.59035°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S₁). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1 ⁽¹⁾</u>	$S_{s} = 0.218 \text{ g}$
From <u>Figure 22-2</u> ^[2]	S1 = 0.065 g

Section 11.4.2 - Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	Vs	N or N _{ch}	Su		
A. Hard Rock	>5,000 ft/s	N/A	N/A		
B. Rock	2,500 to 5,000 ft/s	N/A	N/A		
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf		
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf		
E. Soft clay soil	<600 ft/s	<15	<1,000 psf		
	Any profile with more characteristics: • Plasticity inde		of soil having the		
	 Moisture cont 	shear strength $\overline{s}_{4} < 500 \text{ psf}$			
F. Soils requiring site response analysis in	See	Section 20.3	.1		

accordance with Section 21.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

Site Class	Mapped MCE & Spectral Response Acceleration Parameter at Short Period							
	$S_{\rm s} \le 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	$S_{s} \geq 1.25$			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			
F		See Se	ction 11.4.7 of	ASCE 7				

Table 11.4-1: Site Coefficient F,

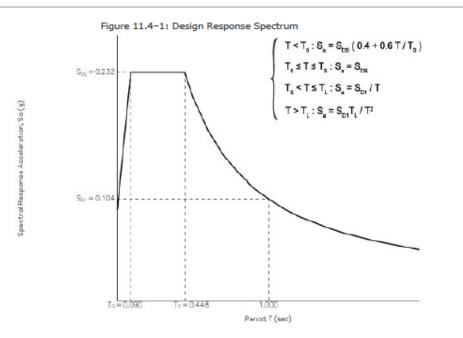
Note: Use straight-line interpolation for intermediate values of Ss

For Site Class = D and $S_s = 0.218 \text{ g}$, $F_s = 1.600$

Table 11.4-2: Site Coefficient Fv

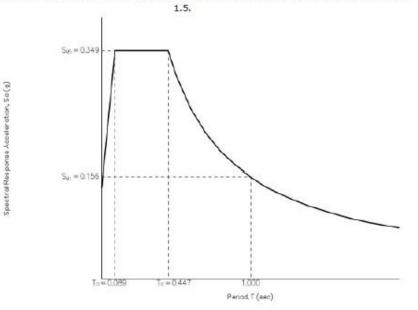
Site Class	Mapped MCE $_{\scriptscriptstyle R}$ Spectral Response Acceleration Parameter at 1–s Period							
	$S_{\rm i} \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_{\rm i} \geq 0.50$			
А	0.8	0.8	0.8	0.8	0.8			
в	1.0	1.0	1.0	1.0	1.0			
С	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2	2.8	2.4	2.4			
F	See Section 11.4.7 of ASCE 7							

Note: Use straight-line interpolation for intermediate values of S1


For Site Class = D and $S_1 = 0.065 \text{ g}$, $F_v = 2.400$

Equation (11.4–1):	$S_{MS} = F_a S_S = 1.600 \times 0.218 = 0.349 \text{ g}$					
Equation (11.4–2):	$S_{M1} = F_v S_1 = 2.400 \times 0.065 = 0.156 \text{ g}$					
Section 11.4.4 — Design Spectral Acceleration Parameters						
Equation (11.4-3):	$S_{DS} = \frac{9}{3} S_{MS} = \frac{9}{3} \times 0.349 = 0.232 \text{ g}$					
Equation (11.4–4):	S _{D1} = ⅔ S _{M1} = ⅔ x 0.156 = 0.104 g					

Section 11.4.5 - Design Response Spectrum


From Figure 22-12^[3]

 $T_L = 4$ seconds

The MCE₈ Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7^[4]

PGA = 0.115

Equation	(11.8-1)	:
----------	----------	---

 $PGA_{M} = F_{PGA}PGA = 1.571 \times 0.115 = 0.18 g$

Site	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA						
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50		
А	0.8	0.8	0.8	0.8	0.8		
в	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
Е	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7 of ASCE 7						

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.115 g, F_{PGA} = 1.571

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17 ^[5]</u>

From Figure 22-18^[6]

C_{R1} = 0.904

 $C_{RS} = 0.909$

Section 11.6 — Seismic Design Category

VALUE OF Sos	RISK CATEGORY						
VALUE OF Sps	I or II	III	IV				
S _{os} < 0.167g	А	А	A				
$0.167g \le S_{DS} < 0.33g$	В	В	С				
$0.33g \le S_{DS} < 0.50g$	С	С	D				
0.50g ≤ S _{os}	D	D	D				

For Risk Category = I and Sts = 0.232 g, Seismic Design Category = B

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S ₀₁	RISK CATEGORY					
VALUE OF SD1	I or II	III	IV			
S ₀₁ < 0.067g	А	А	А			
$0.067g \le S_{D1} < 0.133g$	В	В	С			
$0.133g \le S_{D1} < 0.20g$	С	С	D			
0.20g ≤ S ₀₁	D	D	D			

For Risk Category = I and S₀₁ = 0.104 g, Seismic Design Category = B

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = B

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf 2. *Figure 22-2*:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
3. Figure 22-12:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf 4. Figure 22-7:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf 5. Figure 22-17:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf 6. Figure 22-18:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

APPENDIX A.2: BUILDING LOAD REQUIREMENTS

City of Laramie Code Administration Division INFORMATIONAL BULLETIN #2

Codes and Design Information

June 2017

PLEASE NOTE: Informational Bulletins should not be used as substitutes for actual codes and regulations. Detailed information regarding codes and regulations can be obtained by calling the Code Administration Division at 307-721-5271.

Building Codes

International Building Code (2015) International Residential Code (2015) International Mechanical Code (2015) International Plumbing Code (2015) International Fuel Gas Code (2015) International Fire Code (2015) International Energy Conservation Code (2015) National Electrical Code (2017) Laramie Municipal Code City of Laramie Standard Details

See the Laramie Municipal Code for amendments to each of the codes.

Design Information

Ground snow load	30 psf
Roof snow load	30 psf

Wind speed (3-second gust) Figure 1609.3 IBC Exposure Category C

Section 1613 IBC

Seismic

Site Class B Weathering Severe Termite Slight to none Decay None to slight 41° 19'N/105° 41'W Location Heating degree days 8839 -10 degrees F Winter design temperature Air freezing index 1500 Mean annual temperature 40.7 degrees F Frost depth 42 in. Rainfall intensity (100 year) 1.8 inches/hour Ice Shield Underlayment Yes

Flood hazard: FIRM Community-Panel Number 560002 0005 D Map revised May 17, 2017

Building Code

Laramie County has adopted the 2015 Building Codes, effective January 1, 2017, with the following amendments:

- 2015 INTERNATIONAL BUILDING CODE
- 2015 INTERNATIONAL EXISTING BUILDING CODE
- 2015 INTERNATIONAL FIRE CODE
- · 2015 INTERNATIONAL FUEL GAS CODE
- 2015 INTERNATIONAL MECHANICAL CODE
- 2015 INTERNATIONAL PLUMBING CODE
- 2015 INTERNATIONAL RESIDENTIAL CODE

At the Laramie County Board of Commissioners public hearing on January 16, 2018, the adoption of the 2017 edition of the National Electrical Code was approved as shown below.

2017 National Electrical Code

RESIDENTIAL

Table R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

2110111		WIND DES	SIGN		SEISMIC	SUBJ	IECT T	0	Winter	ICE	FLOOD	AIR	MEAN
SNOW					DESIGN	DA	MAGE		Design	BARRIER	HAZARDS	FREEZING	ANNUAL
GROUND					CATEGORY	FI	ROM		Temp	UNDER-		INDEX	TEMP
LOAD										LAYMENT			
										REQUIRED			
	SPEED	Topographic	Special	Wind-		Weathering	Frost	Termite					
	(mph)	Effects	Wind	borne			Line						
	Vult		Region	debris			depth						
				zone									
30lb/ft2	115	YES	NO	NO	A-B	SEVERE	36"	NO	-1	NO	2007	2000	46 deg

COMMERCIAL

Design Criteria for all Commercial projects shall be designed in accordance with 2015 IBC Chapter 16. Ground Snow Load = 30lb/ft² Wind Vult = 115 mph

Frost Line Depth = 36"

17 NEC ADOPTED

On January 16, 2018, the Laramie County Commissioners approved the adoption of the 2017 National Electrical Code (17 NEC).

All applications submitted to our office after 01/16/18 shall be reviewed and inspected to the 17 NEC.

Search Results

Query Date: Thu Feb 15 2018 Latitude: 41.3114 Longitude: -105.5911

ASCE 7-10 Windspeeds (3-sec peak gust in mph*):

Risk Category I: 105 Risk Category II: 115 Risk Category III-IV: 120 MRI** 10-Year: 76 MRI** 25-Year: 84 MRI** 50-Year: 90 MRI** 100-Year: 96

ASCE 7-05 Windspeed: 90 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 87 (fastest mile in mph)

DNIA CO Мар Satellite NORTH DAKOTA ASHINGTON MONTANA MINNESOTA BOUTH WISCONSIN MICHIC WYDM Chicago TOWA: NEBRASKA ILLINOIS INDIANA NEVADA United States UTAH San Francisco KANSAS MISSOURI ALIFORNIA OLas Vegas TENNEPPE OKLAHOMA Los Angeles ARIZONA NEW MEXICO 8 ARKANSAS MISSISSIPPI San Diego Dallas ALABA ÷ Houston Google Map data @2018 Google, INEGI Terms of Use

*Miles per hour **Mean Recurrence Interval

Users should consult with local building officials to determine if there are community-specific wind speed requirements that govern.

WINDSPEED WEBSITE DISCLAIMER

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report.

CALCULATIONS:

2nd Floor Beam AB1

Length between braced points

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
	_		
Calculate Effective	Base:		
b _e =	45	in.	
GUESS:	Table	3-19	
Beam Choice	W18	K 35	
Beam Weight	35	;	plf
(NC) ΦM _n =	24	9	kip-ft
(LB) ФМ _n =	41	6	kip-ft
(UB) ФМ _n =	42	6	kip-ft
I _x =	51	0	
(LB) I _x =	108	0	in.4
(UB) I _x =	113	0	in.4
@Y2 (LB) I _x =	109	5	in. ⁴
PNA Location	BF	L	
(LB) Y2 Location	4		in.
(UB) Y2 Location	4.9	5	in.
ΣQn @PNA	26	0	kip

CHECK:		
a=	1.699 in.	-
Actual Y2=	4.150 in.	
Actual $\Phi M_n =$	419 kip-ft.	$\Phi M_n > M_u$

Span and Applied Loads (Strength-Level)						
Loads						
Construction Live Load	L _c =	20	psf			
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)		
Service Dead Load	D _s =	85.00	psf			
Service Live Load	L _s =	80.00	psf			
Tributary Widths						
Roof/Floor Trib Width	W _T =	3.75	ft.			
Wall Trib Height	H _T =	14.75	ft.	Wall Dead load 35 psf		
Load						
Factored Dead Load	W _D =	1002	plf			
Factored Live Load	W _L =	480	plf	Area Factor: K _{LL} = 2.00		
Factored Beam Load	W _u =	1482	plf	L _L Reduction L _R = N.A		
Beam Length						

2.00 N.A.

Absolute Moment in Un	braced Segment			
Maximum moment	M _u =	343	k-ft.	
Maximum shear	V _u =	32	k	
-				
	Deflec	tion Lim	its	

L_{b.} =

43

ft.

Deflection Limits						
ΔT	_= L/240	0.179 ft.	2.15 in.			
ΔL	_= L/360	0.119 ft.	1.43 in.			
ΔM	L= L/600	0.072 ft.	0.86 in.			

Select Anchorage:						
Final: ∑Qn	260	kip	Table 3-21			
Position:	Weak	Wea	ak Strong			
Half Span						
Number Of Studs	16	(3/4) in TY	YP.			
Camber	0	in.				

Check Construction Strength:

 $M_u =$ 86 kip-ft. (NC) ΦM_n>M_u

Check Construction Deflection:								
Δ DL=	1.1	in.						
Camber Limit	1.72	in.		OK				
Check In Service D	Check In Service Deflections:							
Δ LL=	0.73	in.	OK					
Δ TL=	1.50	in.	OK					
Check Shear:								
ΦV _n =	159	kips	ОК					

2nd Floor Beam AB2

Composite Beam Design

Material Proper	rties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
	_		
Calculate Effective	Base:		
b _e =	90	in.	
GUESS:	Table	3-19	_
Beam Choice	W18	(35	
Beam Weight	35	;	plf
(NC) ΦM _n =	24	9	kip-ft
(LB) ΦM _n =	39	7	kip-ft
(UB) ΦM _n =	404	4	kip-ft
I _x =	51	0	
(LB) I _x =	101	.0	in. ⁴
(UB) I _x =	105	0	in.4
@Y2 (LB) I _x =	102	5	in. ⁴
PNA Location	6		
(LB) Y2 Location	4.5	5	in.
(UB) Y2 Location	5		in.
∑Qn @PNA	19	4	kip

CHECK:		
a=	0.634 in.	-
Actual Y2=	4.683 in.	
Actual ΦM _n =	400 kip-ft.	$\Phi M_n > M_u$

Span and Applied Loads	(Strongth-Lovel)
Span and Applied Loads	(Strength-Level)

Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	7.5	ft.	
Wall Trib Height	H _T =	0	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	765	plf	
Factored Live Load	W _L =	807	plf	Area Factor: K _{IL} = 2.00
Factored Beam Load	W _u =	1572	plf	L_L Reduction $L_R = 67$
Beam Length	_		_	
Length between braced points	L _{b.} =	43	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M _u =	363	k-ft.	
Maximum shear	V _u =	34	k	

Deflection Limits					
$\Delta T_L =$	L/240	0.179 ft.	2.15 in.		
$\Delta L_L =$	L/360	0.119 ft.	1.43 in.		
$\Delta M_L =$	L/600	0.072 ft.	0.86 in.		

Select Anchorage:						
Final: ∑Qn	194	kip	Table 3-21			
Position:	Weak	W	eak Strong			
Half Span						
Number Of Studs	12	(3/4) in	TYP.			
Camber	1.5	in.				

Check Construction Strength:

 $M_u = 163$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:

Δ DL= 2.0 in. Camber Limit 1.72 in.

(Check	In	Service	Deflect	ions:

Δ LL=	1.55	in.	Try Larger Section
Δ TL=	3.20	in.	Consider DL Camber

Check Shear:

 $\Phi V_n = 159$ kips

ips OK

Use Camber, Shoring, or Larger Section

2nd Floor Beam BC1

Maximum shear

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
	_		
Calculate Effective	Base:		
b _e =	45	in.	
GUESS:	Table	3-19	_
Beam Choice	W10	(22	
Beam Weight	22	2	plf
(NC) ΦM _n =	98	6	kip-ft
(LB) ΦM _n =	16	1	kip-ft
(UB) ФМ _n =	16	5	kip-ft
I _x =	11	В	
(LB) I _x =	27	7	in.4
(UB) I _x =	29	5	in.4
@Y2 (LB) I _x =	28	1	in. ⁴
PNA Location	BF	L	
(LB) Y2 Location	4.5	5	in.
(UB) Y2 Location	5		in.
ΣQn @PNA	11	8	kip

0.771 in.	_
4.614 in.	
162 kip-ft.	$\Phi M_n > M_u$

Span and	Applied	l Loads (S	Strength	n-Level)
Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	3.75	ft.	
Wall Trib Height	H _T =	14.75	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	1002	plf	
Factored Live Load	$W_L =$	480	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	$W_u =$	1482	plf	L_L Reduction $L_R = N.A.$
Beam Length				
Length between braced points	L _{b.} =	25	ft.	
Absolute Moment in Unbraced Se	egment			
Maximum moment	M u =	116	k-ft.	

		Deflection Li	mits	
$\Delta T_L =$	L/240	0.104 ft.	1.25 in.	
$\Delta L_L =$	L/360	0.069 ft.	0.83 in.	
$\Delta M_L =$	L/600	0.042 ft.	0.50 in.	

19

k

Select Anchorage:					
Final: ∑Qn	118	kip	Table 3-21		
Position:	Weak	Wea	k Strong		
Half Span					
Number Of Studs	7	(3/4) in TY	Έ.		
Camber	0	in.			

 $V_u =$

Check Construction Strength:

 $M_u = 28$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:						
Δ DL=	0.5	in.				
Camber Limit	1.00	in.	OK			
Check In Service D						
Δ LL=	0.32	in.	ОК			
Δ TL=	0.67	in.	OK			
Check Shear:						
ΦV _n =	73	kips	OK			

2nd Floor Beam BC2

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
	_		
Calculate Effective	Base:		
b _e =	75	in.	
GUESS:	Table	3-19	-
Beam Choice	W10	(22	
Beam Weight	22		plf
(NC) ΦM _n =	98	5	kip-ft
(LB) ΦM _n =	16	1	kip-ft
(UB) ФМ _n =	16	5	kip-ft
I _x =	11	В	
(LB) I _x =	27	7	in.4
(UB) I _x =	29	5	in.4
@Y2 (LB) I _x =	28	7	in.4
PNA Location	BF	L	
(LB) Y2 Location	4.5	5	in.
(UB) Y2 Location	5		in.
5 Qn @PNA	11	8	ni. kip
ZVIII WEINA	110		νіγ

CHECK:		
a=	0.463 in.	-
Actual Y2=	4.769 in.	
Actual ΦM _n =	163 kip-ft.	$\Phi M_n > M_u$

Snan and	Annlied	aheo I	(Strength-Level)
Span anu	Applieu	Luaus	(Suengui-Lever)

Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	7.5	ft.	
Wall Trib Height	H _T =	0	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	765	plf	
Factored Live Load	W _L =	960	plf	Area Factor: K _{IL} = 2.00
Factored Beam Load	$W_u =$	1725	plf	L_L Reduction $L_R = N.A.$
Beam Length	_		_	
Length between braced points	L _{b.} =	25	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M _u =	135	k-ft.	
Maximum shear	V _u =	22	k	

Deflection Limits					
$\Delta T_L =$	L/240	0.104 ft.	1.25 in.		
$\Delta L_L =$	L/360	0.069 ft.	0.83 in.		
$\Delta M_L =$	L/600	0.042 ft.	0.50 in.		

Select Anchorage:					
Final: ∑Qn	118	kip		Table 3-21	
Position:	Weak	V	Veak	Strong	
Half Span					
Number Of Studs	7	(3/4) ir	ו TYP		
Camber	0.5	in.			

Check Construction Strength:

 $M_u = 54$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:

Δ DL= 1.0 in. Camber Limit 1.00 in.

Check In Service Def	lections:

Δ LL=	0.63	in.	OK
Δ TL=	1.31	in.	Consider DL Camber

Check Shear:

 $\Phi V_n = 73$ kips OK

Use Camber, Shoring, or Larger Section

2nd Floor Spandrel Girder A3-4

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
Calculate Effective b _e =	Base: 90	in.	
GUESS:	Table	3-19	
GUESS: Beam Choice	Table W21		
		(44	plf
Beam Choice	W212	K44	plf kip-ft
Beam Choice Beam Weight	W21 2 44	K44 B	•
Beam Choice Beam Weight (NC) ΦM _n =	W21 44 35	K44 H B 6	kip-ft
Beam Choice Beam Weight (NC) ΦM _n = (LB) ΦM _n =	W21 44 35 57	K44 B 6 6	kip-ft kip-ft

Span and		(-	<u> </u>	
Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	21.5	ft.	
Wall Trib Height	H _T =	14.75	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	2813	plf	
Factored Live Load	W _L =	1837	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	W _u =	4650	plf	L_L Reduction $L_R = 53$
Beam Length				
Length between braced points	L _{b.} =	30	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M _u =	523	k-ft.	
Maximum shear	V _u =	70	k	

Span and Applied Loads (Strength-Level)

-		Deflection Li	mits	
$\Delta T_L =$	L/240	0.125 ft.	1.50 in.	
$\Delta L_L =$	L/360	0.083 ft.	1.00 in.	
$\Delta M_L =$	L/600	0.050 ft.	0.60 in.	

CHECK:		
a=	0.850 in.	-
Actual Y2=	4.575 in.	
Actual $\Phi M_n =$	578 kip-ft.	$\Phi M_n > M_u$

in.4

in.4

in.

in.

kip

1720

1669

6

4.5

5

260

Select Anchorage:				
Final: ∑Qn	260	kip Table 3-21		
Position:	Weak	Weak Strong		
Half Span				
Number Of Studs	16	(3/4) in TYP.		
Camber	1.25	in.		

Check Construction Strength:

(UB) I_x=

@Y2 (LB) I_x=

PNA Location

ΣQn @PNA

(LB) Y2 Location

(UB) Y2 Location

 $M_u = 220$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:					
Δ DL=	0.8	in.			
Camber Limit	1.20	in.		OK	
Check In Service Deflections:					
Δ LL=	0.65	in.	OK		
Δ TL=	1.34	in.	OK		
Check Shear:					
ΦV _n =	217	kips	OK		

2nd Floor Girder B3-4

Maximum shear

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
	_		
Calculate Effective	Base:		
b _e =	90	in.	
GUESS:	Table	3-19	-
Beam Choice	W21	X55	
Beam Weight	55	5	plf
(NC) ΦM _n =	47	3	kip-ft
(LB) ΦM _n =	75	2	kip-ft
(UB) ФМ _n =	76	6	kip-ft
I _x =	114	10	
(LB) I _x =	229	0	in.4
(UB) I _x =	237	0	in.4
@Y2 (LB) I _x =	227	0	in. ⁴
PNA Location	BF	L	
(LB) Y2 Location	4.9	5	in.
(UB) Y2 Location	5		in.
ΣQn @PNA	38	1	kip

CHECK:		
a=	1.245 in.	-
Actual Y2=	4.377 in.	
Actual $\Phi M_n =$	749 kip-ft.	$\Phi M_n > M_u$

Span and	Applied	Loads (S	trength	-Level)
Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	33	ft.	
Wall Trib Height	H _T =	0	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	3366	plf	
Factored Live Load	W _L =	2480	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	W _u =	5846	plf	L_L Reduction L_R = 47
Beam Length	_			
Length between braced points	L _{b.} =	30	ft.	
Absolute Moment in Unbraced Se	egment			
Maximum moment	$M_u =$	658	k-ft.	

Deflection Limits							
$\Delta T_L =$	L/240	0.125 ft.	1.50 in.				
$\Delta L_L =$	L/360	0.083 ft.	1.00 in.				
$\Delta M_L =$	L/600	0.050 ft.	0.60 in.				

88

k

Select Anchorage:							
Final: ∑Qn	381	kip		Table 3-21			
Position:	Weak	W	/eak	Strong			
Half Span							
Number Of Studs	23	(3/4) in	TYP				
Camber	0	in.					

 $V_u =$

Check Construction Strength:

 $M_u = 335$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:							
Δ DL=	0.9	in.					
Camber Limit	1.20	in.	OK				
Check In Service Deflections:							
Δ LL=	0.73	in.	ОК				
Δ TL=	1.51	in.	Consider DL Camber				
Check Shear:							
ΦV _n =	234	kips	ОК				

Mech Bay Girder B3-4

E

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
Calculate Effective	Base:		
b _e =	90	in.	
GUESS:	Table	3-19	_
Beam Choice	W24)	K62	
Beam Weight	62	2	plf
(NC) ΦM _n =	574	4	kip-ft
(LB) ΦM _n =	94	8	kip-ft
(UB) ΦM _n =	96	7	kip-ft
I _x =	155	0	
(LB) I _x =	316	0	in.4
(UB) I _x =	326	0	in.4
@Y2 (LB) I _x =	319	8	in. ⁴
PNA Location	BF	L	
(LB) Y2 Location	4		in.
(UB) Y2 Location	4.5	5	in.
ΣQn @PNA	495		kip

CHECK:		
a=	1.618 in.	-
Actual Y2=	4.191 in.	
Actual $\Phi M_n =$	955 kip-ft.	$\Phi M_n > M_u$

Snan	and Applied	sheo I I	(Strength-	l evel)
Opan	and Applied	Loaus	(ou engui-	Level

Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	150.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	33	ft.	
Wall Trib Height	H _T =	0	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	5940	plf	
Factored Live Load	W _L =	2480	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	W _u =	8420	plf	L_L Reduction $L_R = 47$
Beam Length				
Length between braced points	L _{b.} =	30	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M _u =	947	k-ft.	
Maximum shear	$V_u =$	126	k	

Deflection Limits							
$\Delta T_L =$	L/240	0.125 ft.	1.50 in.				
$\Delta L_L =$	L/360	0.083 ft.	1.00 in.				
$\Delta M_L=$	L/600	0.050 ft.	0.60 in.				

Select Anchorage:								
Final: ∑Qn	495	kip	Table 3-21					
Position:	Weak	We	ak Strong					
Half Span								
Number Of Studs	29	(3/4) in T	YP.					
Camber	0	in.						

Check Construction Strength:

 $M_u = 336$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:							
Δ DL=	0.7	in.					
Camber Limit	1.20	in.	OK				
Check In Service Deflections:							
Δ LL=	0.52	in.	ОК				
Δ TL=	1.49	in.	ОК				
Check Shear:							
ΦV _n =	306	kips	OK				

Mech Bay Beam BC3

Loads

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
Calculate Effective	Base:		
b _e =	75	in.	
GUESS:	Table	3-19	_
Beam Choice	W12	(22	
Beam Weight	22	2	plf
(NC) ΦM _n =	110	0	kip-ft
(LB) ΦM _n =	19	8	kip-ft
(UB) ФМ _n =	204	4	kip-ft
I _x =	15	6	
(LB) I _x =	41	4	in.4
(UB) I _x =	43	8	in. ⁴
@Y2 (LB) I _x =	42	4	in. ⁴
PNA Location	BF	L	
(LB) Y2 Location	4.5	5	in.
(UB) Y2 Location	5		in.
ΣQn @PNA	15	3	kip

Luaus				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	150.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	7.5	ft.	
Wall Trib Height	H _T =	0	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	1350	plf	
Factored Live Load	W _L =	960	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	W _u =	2310	plf	L_L Reduction $L_R = N.A.$
Beam Length				
Length between braced points	L _{b.} =	25	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M _u =	180	k-ft.	
Maximum shear	V _u =	29	k	

Span and Applied Loads (Strength-Level)

		Deflection Limits	
$\Delta T_L =$	L/240	0.104 ft.	1.25 in.
$\Delta L_L =$	L/360	0.069 ft.	0.83 in.
$\Delta M_L=$	L/600	0.042 ft.	0.50 in.

Select Anchorage:						
Final: ∑Qn	153	kip Table 3-21				
Position:	Weak	Weak Strong				
Half Span						
Number Of Studs	9	(3/4) in TYP.				
Camber	0	in.				

Check Construction Strength:

Actual Y2= 4.700 in. Actual ΦM_n = **200** kip-ft.

CHECK:

 $M_u = 54$ kip-ft. (NC) $\Phi M_n > M_u$

ΦM_n>M_u

0.600 in.

Check Construction Deflection:					
Δ DL=	0.7	in.			
Camber Limit	1.00	in.	OK		
Check In Service D					
Δ LL=	0.43	in.	ОК		
Δ TL=	1.23	in.	ОК		
Check Shear:					
ΦV _n =	96	kips	OK		

Spandrel Girder A3-4

Composite Beam Design

Material Proper	ties:		
Concrete Strength	f' _c =	4	ksi
Yield Stress	F _y =	50	ksi
Concrete Type	CT=	NWC	(NWC or LWC)
Slab Thickness	ST=	5	in.
Calculate Effective	Base:		
b _e =	90	in.	
GUESS:	Table	3-19	_
Beam Choice	W21	K 44	
Beam Weight	44	ļ	plf
(NC) ΦM _n =	35	8	kip-ft
(LB) ΦM _n =	57	6	kip-ft
(UB) ФМ _п =	58	6	kip-ft
I _x =	84	3	
(LB) I _x =	166	0	in.4
(UB) I _x =	172	0	in.4
@Y2 (LB) I _x =	166	9	in. ⁴
PNA Location	6		
(LB) Y2 Location	4.9	5	in.
(UB) Y2 Location	5		in.
ΣQn @PNA	26	0	kip

0.850 in.	-
4.575 in.	
578 kip-ft.	$\Phi M_n > M_u$
	4.575 in.

Span and	Applied	Loads (S	trength-	Level)
Loads				
Construction Live Load	L _c =	20	psf	
Construction Dead Load	D _c =	46.97	psf	(Weight of deck+NWC)
Service Dead Load	D _s =	85.00	psf	
Service Live Load	L _s =	80.00	psf	
Tributary Widths				
Roof/Floor Trib Width	W _T =	21.5	ft.	
Wall Trib Height	H _T =	14.75	ft.	Wall Dead load 35 psf
Load				
Factored Dead Load	W _D =	2813	plf	
Factored Live Load	W _L =	1837	plf	Area Factor: K _{LL} = 2.00
Factored Beam Load	W _u =	4650	plf	L_L Reduction $L_R = 53$
Beam Length	_		_	
Length between braced points	L _{b.} =	30	ft.	
Absolute Moment in Unbraced S	egment			
Maximum moment	M u =	523	k-ft.	
Maximum shear	$V_u =$	70	k	

Deflection Limits						
$\Delta T_L =$	L/240	0.125 ft.	1.50 in.			
$\Delta L_L =$	L/360	0.083 ft.	1.00 in.			
$\Delta M_L =$	L/600	0.050 ft.	0.60 in.			

Select Anchorage:							
Final: ∑Qn	260	kip	Table 3-21				
Position:	Weak	Weak	Strong				
Half Span							
Number Of Studs	16	(3/4) in TYP					
Camber	1.25	in.					

Check Construction Strength:

 $M_u = 220$ kip-ft. (NC) $\Phi M_n > M_u$

Check Construction Deflection:						
Δ DL=	0.8	in.				
Camber Limit	1.20	in.		OK		
Check In Service Deflections:						
Δ LL=	0.65	in.	ОК			
Δ TL=	1.34	in.	ОК			
Check Shear:						
ΦV _n =	217	kips	ОК			

Colun	Column Selection				
W-Shape Properties	= W14X48				
Weight	W = 48	lb/ft			
Cross-Sectional Area	A = 14.1	in. ²			
Depth	d = 13.8	in.			
Web thickness	t _w = 0.34	in.			
Flange width	b _f = 8.03	in.			
Flange thickness	t _f = 0.595	in.			
X Axis Properties					
Moment of Inertia	I _x = 484	in.⁴			
Elastic section modulus	S_x = 70.2	in. ³			
Radius of gyration	r _x = 5.85	in.			
Plastic section modulus	Z _x = 78.4	in. ³			
Y Axis Properties					
Moment of Inertia	I _y = 51.4	in.⁴			
Elastic section modulus	S _v = 12.8	in. ³			
Radius of gyration	r _y = 1.91	in.			
Plastic section modulus	$Z_{y} = 19.6$	in. ³			
Other Properties					
Effective radius of gyration	$r_{ts} = 2.2$	in.			
Flange centroid distance	h _o = 13.2	in.			
Torsional moment of inertia	J = 1.45	in.⁴			
Warping-torsion constant	C _w = 2240	in.°			

Material Selection						
ASTM	= A9	92				
Туре	= Hig	gh-Stren	gth, Low-Alloy			
Modulus of Elasticity	E = 29	000	ksi			
Shear Modulus of Elasticity	G = 11	200	ksi			
Min. yield tensile stress	F _y = 50		ksi			
Min. ultimate tensile stress	$F_{u} = 65$		ksi			
L	oads					
Dead Load	P _D =	126	k			
Live Load	P _L =	34	k			
Snow Load	P _s =	9.675	k			
Roof Live Load	P _L , =	9.675	k			
Wind Load	Pw =	182	k			

Applied Load	ls (Strength-	Level)	
Loads			
Snow	S =	30	psf
Roof Live	L _r =	30	psf
Floor Live	L ₀ =	80	psf
Roof Dead	D _r =	47	psf
Floor Dead	D _f =	85	psf
Wall Dead	D _w =	35	psf
Wind	W =	182	k
Tributary Area			
Roof/Floor Trib Area	A _T =	322.5	ft^2
Wall Trib Area	A _w =	1606	ft^2
Number of Floors			
Roof		1	floors
Floors		2	floors

Live Load Reduction

Factors			
	K _{LL} =	4	
	$K_{LL}A_T =$	1290	
Checks			
	L ₀ < 100	YES	
	$K_{LL}A_{T} > 400$	YES	
Reduction Factor (RF)			
	RF =	0.6676	
	RF _{min} =	0.4	
Reduced Live Load			
	L =	53 ps	f

Load Combinations

	P =	176.7 k
	P =	211.4 k
	P =	257.9 k
	P =	355.5 k
	P =	295.6 k
Control	P _u =	355.5 k

	Loc	al Buckling	
Flange			
Width-To-Thickness Ratio	b _f /2t _f =	6.75	Nonslender
Ratio Limit	λ _r =	13.49	
Unstiffened Reduction Factor	Q _s =	1.00	
Web			
Height-To-Thickness Ratio	h/t _w =	33.60	Nonslender
Ratio Limit	$\lambda_r =$	35.88	
Effective Height	b _e =	11.42 in.	(Approximate)
Effective Area	A _e =	14.10 in. ²	
Stiffened Reduction Factor	Q _a =	1.00	
Whole Member			
Strength Reduction Factor	Q =	1.00	

Compression Members				Controls	
Effective Length Factor	K =	1		Controis	
Unbraced Length	L _b =	13	ft.		
Unbraced Length	L _b =	156	in.		
Calculations					
Factored Compressive Load	P _u =	355	k		
Design Compressive Strength	$\Phi P_n =$	389.58	k	Okay	
Slenderness Ratio	KL/r _v =	81.68		Okay	
Elastic Buckling Stress	F _e =	42.91	ksi		
Limiting Ratio (Nonslender)	F _v /F _e =	1.17			
Critical Stress (Nonslender)	F _{cr} =	30.70			
Limiting Ratio	$^{(Q)}F_{y}/F_{e} =$		<2.25?	Inelastic	
Critical Stress	^(Q) F _{cr} =	30.70	ksi		

	Tors	sional Bud	kling	
Compression Members	_		_	Doesn't Control
Effective Length Factor	K _z =	1		Doesint Control
Unbraced Length	L _b =	13	ft.	
Unbraced Length	L _b =	156	in.	
Calculations				
Factored Compressive Load	Pu=	355	k	
Design Compressive Strength	$\Phi P_n =$	632.64	k	Okay
Slenderness Ratio	KL/r _v =	81.68		Okay
Elastic Buckling Stress	F _e =	7116.00	ksi	
Limiting Ratio (Nonslender)	F _v /F _e =	0.01		
Critical Stress (Nonslender)	F _{cr} =	49.85		
Limiting Ratio	^(Q) F _v /F _e =	0.01	<2.25?	Inelastic
Critical Stress	^(Q) F _{cr} =	49.85	ksi	

Loading - Plate	:		Column Selection	W14X48	
P _D =		kips	d=	13.8	in.
P _L =		kips	b _f =	8.03	in.
OR: P _u =	356	kips	t _f =	0.595	in.
F _y =	36	s ksi	t _w =	0.34	in.
F _u =	58	s ksi	F _y =	50	ksi
F' _C =	3	s ksi	F _u =	65	ksi
P _u =	356	i kips			
Plate Design					
A1 RQD:	215	in. ²	m=	3.45	in.
Base b=	15	in.	n=	6.79	in.
_			n'=	2.63	in.
TRY b=	20	in			
A1=	400	in. ²		0.454	
Anchor check:	19.8	<b ok<="" th=""><th></th><th>0.78</th><th><=1</th>		0.78	<=1
		. 2	λn'=	2.04	
A2=	484	in. ²		0.70	•
A2/A1=	1.2	<4 ok	L=	6.79	in
φcPp=	729	ОК	f _{pu} =	0.9	ksi
			t _{min} =	1.59	in.

Coulmn: A1

USE:

PL1.75 x 20in. X 20in.

Col	umn Selection	
W-Shape Properties	= W14X61	
Weight	W = 61	lb/ft
Cross-Sectional Area	A = 17.9	in. ²
Depth	d = 13.9	in.
Web thickness	t _w = 0.375	in.
Flange width	b _f = 10	in.
Flange thickness	$t_f = 0.645$	in.
X Axis Properties		
Moment of Inertia	I _x = 640	in.⁴
Elastic section modulus	S_x = 92.1	in. ³
Radius of gyration	$r_x = 5.98$	in.
Plastic section modulus	Z _x = 102	in. ³
Y Axis Properties		
Moment of Inertia	I _y = 107	in.⁴
Elastic section modulus	S_v = 21.5	in. ³
Radius of gyration	r _y = 2.45	in.
Plastic section modulus	$Z_y = 32.8$	in. ³
Other Properties		
Effective radius of gyration	r _{ts} = 2.78	in.
Flange centroid distance	h _o = 13.3	in.
Torsional moment of inertia	J = 2.19	in.⁴
Warping-torsion constant	C _w = 4710	in.°

Material	Selection		
ASTM	= A9	92	
Туре	= Hig	h-Stren	gth, Low-Alloy
Modulus of Elasticity	E = 290	000	ksi
Shear Modulus of Elasticity	G = 112	200	ksi
Min. yield tensile stress	F _y = 50		ksi
Min. ultimate tensile stress	$F_{u} = 65$		ksi
Lo	oads		
Dead Load	P _D =	186	k
Live Load	P _L =	56	k
Snow Load	Ps =	19.35	k
Roof Live Load	P _L , =	19.35	k
Wind Load	P _w =	182	k

Applied Loads (Strength-	Level)	
Loads			
Snow	S =	30	psf
Roof Live	L _r =	30	psf
Floor Live	L ₀ =	80	psf
Roof Dead	D _r =	47	psf
Floor Dead	D _f =	85	psf
Wall Dead	D _w =	35	psf
Wind	W =	182	k
Tributary Area			
Roof/Floor Trib Area	A _T =	645	ft^2
Wall Trib Area	A _w =	1320	ft^2
Number of Floors			
Roof		1	floors
Floors		2	floors

Live Load Reduction

Factors		
	K _{LL} =	4
	K _{LL} A _T =	2580
Checks		
	L ₀ < 100	YES
	K _{LL} A _T > 400	YES
Reduction Factor (RF)		
	RF =	0.5453
	RF _{min} =	0.4
Reduced Live Load		
	L =	44 ps

Load Combinations

٦

P =	260.6 k
P =	323.1 k
P =	345.4 k
P =	443.2 k
P =	349.5 k
P _u =	443.2 k
	P = P = P = P =

	Loc	al Buckling	
Flange			
Width-To-Thickness Ratio	b _f /2t _f =	7.75	Nonslender
Ratio Limit	λ _r =	13.49	
Unstiffened Reduction Factor	Q _s =	1.00	
Web			
Height-To-Thickness Ratio	h/t _w =	30.40	Nonslender
Ratio Limit	λ,=	35.88	
Effective Height	$\mathbf{b}_{e} =$	11.40 in.	(Approximate)
Effective Area	A _e =	17.90 in. ²	
Stiffened Reduction Factor	Q _a =	1.00	
Whole Member			
Strength Reduction Factor	Q =	1.00	
	Flex	ural Buckling	
Compression Members			Controls
Effective Length Factor	K _	1	Controis

			Controls
Effective Length Factor	K =	1	Controis
Unbraced Length	L _b =	13 ft.	
Unbraced Length	L _b =	156 in.	
Calculations			
Factored Compressive Load	$P_u =$	443 k	
Design Compressive Strength	$\Phi P_n =$	598.86 k	Okay
Slenderness Ratio	KL/r _v =	63.67	Okay
Elastic Buckling Stress	F _e =	70.60 ksi	
Limiting Ratio (Nonslender)	F _v /F _e =	0.71	
Critical Stress (Nonslender)	F _{cr} =	37.17	
Limiting Ratio	$^{(Q)}F_{y}/F_{e} =$	0.71 <2.25?	Inelastic
Critical Stress	$^{(Q)}F_{cr} =$	37.17 ksi	

Torsional Buckling					
Compression Members				Doesn't Control	
Effective Length Factor	K _z =	1		Doesint Control	
Unbraced Length	L _b =	13	ft.		
Unbraced Length	L _b =	156	in.		
Calculations					
Factored Compressive Load	$P_u =$	443	k		
Design Compressive Strength	ΦP _n =	803.93	k	Okay	
Slenderness Ratio	KL/r _y =	63.67		Okay	
Elastic Buckling Stress	F _e =	10711.36	ksi		
Limiting Ratio (Nonslender)	$F_y/F_e =$	0.00			
Critical Stress (Nonslender)	F _{cr} =	49.90			
Limiting Ratio	^(Q) F _y /F _e =	0.00	<2.25?	Inelastic	
Critical Stress	^(Q) F _{cr} =	49.90	ksi		

Loading - Plate):			Column Selection	W14X61	
P _D =		kips		d=	13.9	in.
P _L =		kips		b _f =	10	in.
OR: P _u =	444	kips		t _f =	0.645	in.
F _y =	36	ksi		t _w =	0.375	in.
F _u =	58	ksi		F _y =	50	ksi
F' _C =	3	ksi		F _u =	65	ksi
LRFD Factored						
P _u =	444	kips				
Plate Design						
A1 RQD:	268	in. ²		m=	3.40	in
Base b=	17	in.		n=		
				n'=		
TRY b=	20	in				
A1=	400	in. ²		X=	0.593	
Anchor check:	19.9	<b ok<="" th=""><th></th><th>λ=</th><th>0.94</th><th><=1</th>		λ=	0.94	<=1
			_	λn'=	2.77	
A2=	484	in. ²				
A2/A1=	1.2	<4 ok		L=	6.00	in
a Du-	700	01/		f _		kai
φcPp=	729	ОК	I	f _{pu} =		ksi
				t _{min} =	1.57	in.

Coulmn: A3

USE:

PL1.75in. x 20in. X 20in.

Column Selection						
W-Shape Properties = W1	4X61					
Weight W = 61	lb/ft					
Cross-Sectional Area A = 17.	9 in. ²					
Depth d = 13.	9 in.					
Web thickness $t_w = 0.3$	75 in.					
Flange width $b_f = 10$	in.					
Flange thickness t _f = 0.6	45 in.					
X Axis Properties						
Moment of Inertia $I_x = 640$						
Elastic section modulus $S_x = 92$.	1 in. ³					
Radius of gyration $r_x = 5.9$	8 in.					
Plastic section modulus $Z_x = 102$	2 in. ³					
Y Axis Properties						
Moment of Inertia $I_y = 107$	7 in.⁴					
Elastic section modulus $S_v = 21$.	5 in. ³					
Radius of gyration $r_y = 2.4$						
Plastic section modulus $Z_y = 32$.	8 in. ³					
Other Properties						
Effective radius of gyration $r_{ts} = 2.7$	8 in.					
Flange centroid distance $h_0 = 13$.	3 in.					
Torsional moment of inertia $J = 2.1$	4					
Warping-torsion constant $C_w = 47^{\circ}$	10 in. °					

Material Selection					
ASTM	= A99	2			
Туре	= High	n-Strength	, Low-Alloy		
Modulus of Elasticity	E = 290	00 ks	i		
Shear Modulus of Elasticity	G = 112	00 ks	i		
Min. yield tensile stress	$F_{y} = 50$	ks	i		
Min. ultimate tensile stress	$F_{u} = 65$	ks	i		
Loads					
Dead Load	P _D =	216 k			
Live Load	P _L =	47 k			
Snow Load	Ps =	15.3 k			
Roof Live Load	P _L , =	15.3 k			
Wind Load	P _w =	182 k			

Applied Loads (Strength-Level)				
Loads				
Snow	S =	30	psf	
Roof Live	L _r =	30	psf	
Floor Live	L ₀ =	80	psf	
Roof Dead	D _r =	150	psf	
Floor Dead	D _f =	85	psf	
Wall Dead	D _w =	35	psf	
Wind	W =	182	k	
Tributary Area				
Roof/Floor Trib Area	A _T =	510	ft^2	
Wall Trib Area	A _w =	1496	ft^2	
Number of Floors				
Roof		1	floors	
Floors		2	floors	

Live Load Reduction

Factors		
	K=	4
	$K_{LL}A_T =$	2040
Checks		
	L ₀ < 100	YES
	K _{LL} A _T > 400	YES
Reduction Factor (RF)		
	RF =	0.5821
	RF _{min} =	0.4
Reduced Live Load		
	L =	47 psf

Load Combinations

	P =	301.8 k
	P =	342.3 k
	P =	374.2 k
	P =	472.1 k
	P =	376.0 k
Control	P _u =	472.1 k

	Loc	cal Buckling			
Flange				_	
Width-To-Thickness Ratio	b _f /2t _f =	7.75	Nonslender		
Ratio Limit	λ _r =	13.49			
Unstiffened Reduction Factor	Q _s =	1.00			
Web					
Height-To-Thickness Ratio	h/t _w =	30.40	Nonslender		
Ratio Limit	λ _r =	35.88		_	
Effective Height	$b_e =$	11.40 in.	(Appro	oximate)	
Effective Area	A _e =	17.90 in. ²			
Stiffened Reduction Factor	Q _a =	1.00			
Whole Member					
Strength Reduction Factor	Q =	1.00			
	Flex	ural Buckling			
Compression Members			Cor	ntrols	
Effective Length Factor	K =	1	00	in ora	
Unbraced Length	L _b =	13 ft.			
I hade an end I was adde		450 10			

Ellective Length Factor	n =	1	
Unbraced Length	L _b =	13 ft.	
Unbraced Length	L _b =	156 in.	
Calculations			
Factored Compressive Load	P _u =	472 k	
Design Compressive Strength	ΦP _n =	598.86 k	Okay
Slenderness Ratio	KL/r _v =	63.67	Okay
Elastic Buckling Stress	F _e =	70.60 ksi	
Limiting Ratio (Nonslender)	F _v /F _e =	0.71	
Critical Stress (Nonslender)	F _{cr} =	37.17	
Limiting Ratio	$^{(Q)}F_{v}/F_{e} =$	0.71 <2.25?	Inelastic
Critical Stress	^(Q) F _{cr} =	37.17 ksi	

Torsional Buckling						
Compression Members				Doesn't Control		
Effective Length Factor	K _z =	1		Doesint Control		
Unbraced Length	L _b =	13	ft.			
Unbraced Length	L _b =	156	in.			
Calculations						
Factored Compressive Load	$P_u =$	472	k			
Design Compressive Strength	ΦP _n =	803.93	k	Okay		
Slenderness Ratio	KL/r _v =	63.67		Okay		
Elastic Buckling Stress	F _e =	10711.36	ksi			
Limiting Ratio (Nonslender)	F _v /F _e =	0.00				
Critical Stress (Nonslender)	F _{cr} =	49.90				
Limiting Ratio	$^{(Q)}F_{y}/F_{e} =$	0.00	<2.25?	Inelastic		
Critical Stress	$^{(Q)}F_{cr} =$	49.90	ksi			

Loading - Plate	:			Column Selection	W14X61	
P _D =		kips		d=	13.9	in.
P _L =		kips		b _f =	10	in.
OR: P _u =	472	kips		t _f =	0.645	in.
F _y =	36	ksi		t _w =	0.375	in.
F _u =	58	ksi		F _y =	50	ksi
F' _C =	3	ksi		F _u =	65	ksi
LRFD Factored						
P _u =	472	kips				
Plate Design						
A1 RQD:	285	in. ²		m=	3.40	in
Base b=	17	in.		n=		
				n'=		
TRY b=	20	in				
A1=	400	in. ²		X=	0.630	
Anchor check:	19.9	<b ok<="" td=""><td></td><td>λ=</td><td>0.99</td><td><=1</td>		λ=	0.99	<=1
				λn'=	2.91	
A2=	484	in. ²	_			
A2/A1=	1.2	<4 ok		L=	6.00	in
φcPp=	729	ок		f _{pu} =	1.2	ksi
φυρφ-	123		l i			
				t _{min} =	1.62	in.

Coulmn: B1

USE:

PL1.75in. x 20in. X 20in.

Column Selection						
W-Shape Properties	= W14X68					
Weight	W = 68	lb/ft				
Cross-Sectional Area	A = 20	in. ²				
Depth	d = 14	in.				
Web thickness	t _w = 0.415	in.				
Flange width	b _f = 10	in.				
Flange thickness	t _f = 0.72	in.				
X Axis Properties						
Moment of Inertia	I _x = 722	in.⁴				
Elastic section modulus	S _x = 103	in. ³				
Radius of gyration	r _x = 6.01	in.				
Plastic section modulus	Z _x = 115	in. ³				
Y Axis Properties						
Moment of Inertia	l _y = 121	in.⁴				
Elastic section modulus	S_v = 24.2	in. ³				
Radius of gyration	r _y = 2.46	in.				
Plastic section modulus	$Z_{y} = 36.9$	in. ³				
Other Properties						
Effective radius of gyration	$r_{ts} = 2.8$	in.				
Flange centroid distance	h _o = 13.3	in.				
Torsional moment of inertia	J = 3.01	in.4				
Warping-torsion constant	C _w = 5380	in.°				

Material Selection					
ASTM	= A992				
Туре	= High-	Strength, Low-Alloy			
Modulus of Elasticity	E = 2900	0 ksi			
Shear Modulus of Elasticity	G = 1120	0 ksi			
Min. yield tensile stress	$F_{y} = 50$	ksi			
Min. ultimate tensile stress	$F_{u} = 65$	ksi			
Lo	ads				
Dead Load	P _D =	317 k			
Live Load	P _L =	77 k			
Snow Load	P _s =	29.7 k			
Roof Live Load	P _L , =	29.7 k			
Wind Load	P _w =	182 k			

Applied Loads (Strength-Level)					
Loads					
Snow	S =	30	psf		
Roof Live	L _r =	30	psf		
Floor Live	L ₀ =	80	psf		
Roof Dead	D _r =	150	psf		
Floor Dead	D _f =	85	psf		
Wall Dead	D _w =	35	psf		
Wind	W =	182	k		
Tributary Area					
Roof/Floor Trib Area	A _T =	990	ft^2		
Wall Trib Area	A _w =	0	ft^2		
Number of Floors					
Roof		1	floors		
Floors		2	floors		

Live Load Reduction

Factors			
	K=	4	
	$K_{LL}A_T =$	3960	
Checks			
	L ₀ < 100	YES	
	K _{LL} A _T > 400	YES	
Reduction Factor (RF)			
	RF =	0.4884	
	RF _{min} =	0.4	
Reduced Live Load			
	L =	39 ps	f

Load Combinations

	P =	443.5 k
	P =	518.8 k
	P =	518.7 k
	P =	615.7 k
	P =	467.1 k
Control	P _u =	615.7 k

	Loc	al Buckling			
Flange					
Width-To-Thickness Ratio	b _f /2t _f =	6.97	Nonslender		
Ratio Limit	λ _r =	13.49			
Unstiffened Reduction Factor	Q _s =	1.00			
Web					
Height-To-Thickness Ratio	h/t _w =	27.50	Nonslender		
Ratio Limit	λ _r =	35.88			
Effective Height	$b_e =$	11.41 in.	(Appro:	ximate)	
Effective Area	A _e =	20.00 in. ²			
Stiffened Reduction Factor	Q _a =	1.00			
Whole Member					
Strength Reduction Factor	Q =	1.00			
	Flexu	ural Buckling			
Compression Members			Com	una la	
Effective Length Factor	K =	1	Con	trois	
Unbraced Length	L _b =	13 ft.			
Unbraced Length	L _b =	156 in.			
Calculations					
Factored Compressive Load	$P_u =$	616 k			

Factored Compressive Load	$P_u =$	616 k	
Design Compressive Strength	ΦP _n =	670.73 k	Okay
Slenderness Ratio	KL/r _v =	63.41	Okay
Elastic Buckling Stress	F _e =	71.17 ksi	
Limiting Ratio (Nonslender)	F _v /F _e =	0.70	
Critical Stress (Nonslender)	F _{cr} =	37.26	
Limiting Ratio	^(Q) F _v /F _e =	0.70 <2.25?	Inelastic
Critical Stress	^(Q) F _{cr} =	37.26 ksi	

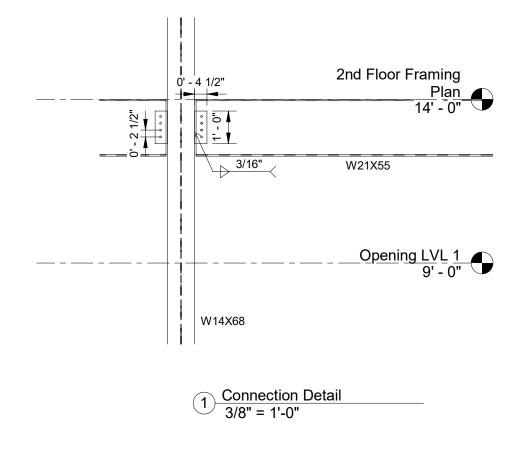
Torsional Buckling						
Compression Members				Doesn't Control		
Effective Length Factor	K _z =	1		Doesn't Control		
Unbraced Length	L _b =	13	ft.			
Unbraced Length	L _b =	156	in.			
Calculations						
Factored Compressive Load	$P_u =$	616	k			
Design Compressive Strength	ΦP _n =	898.27	k	Okay		
Slenderness Ratio	KL/r _y =	63.41		Okay		
Elastic Buckling Stress	F _e =	10848.50	ksi			
Limiting Ratio (Nonslender)	F _y /F _e =	0.00				
Critical Stress (Nonslender)	F _{cr} =	49.90				
Limiting Ratio	^(Q) F _y /F _e =	0.00	<2.25?	Inelastic		
Critical Stress	^(Q) F _{cr} =	49.90	ksi			

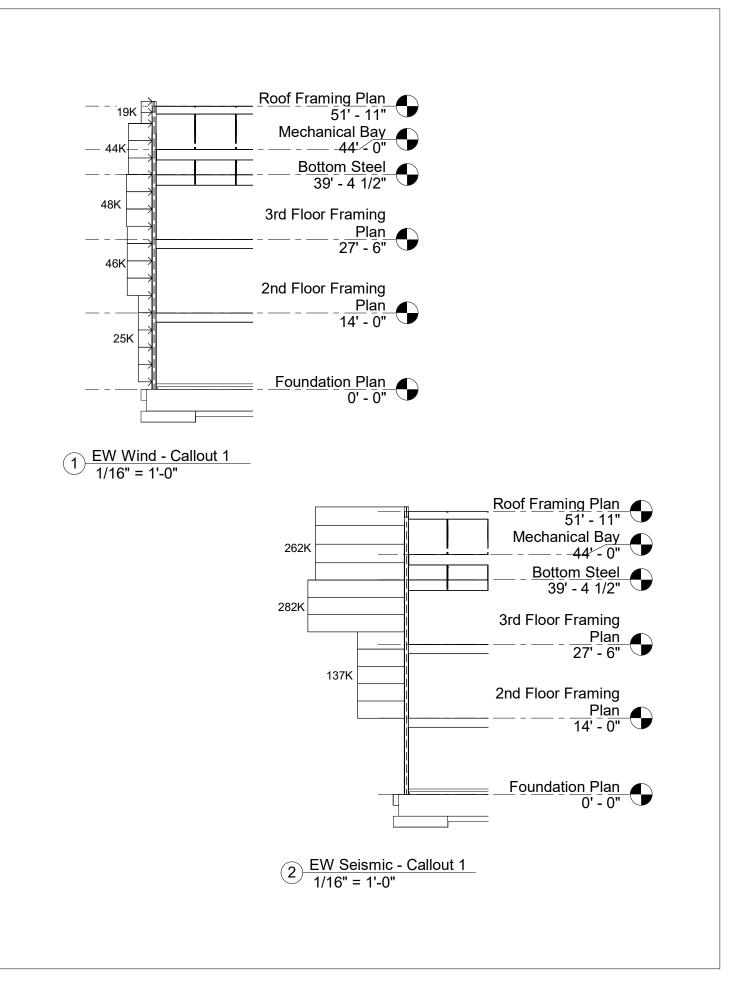
Loading - Plate	e:		Column Sel	ection	W14X68			
P _D =		kips		d=	14	in.		
P _L =		kips		b _f =	10	in.		
OR: P _u =	616	kips		t _f =	0.72	in.		
F _y =	36	ksi		t _w =	0.415	in.		
F _u =	58	ksi		F _y =	50	ksi		
F' _C =	3	ksi		$F_u =$	65	ksi		
LRFD Factored	LRFD Factored Load							
P _u =	616	kips						
Plate Design								
A1 RQD:	372	in. ²		m=	4.35			
Base b=	20	in.		n=	7.00			
				n'=	2.96	ın.		
TRY b=	22	in . 2		.,				
A1=	484	in. ²		X=		<=1		
Anchor check:	20	<b ok<="" th=""><th></th><th>λ= λn'=</th><th></th><th><=1</th>		λ= λn'=		<=1		
A2=	576	in. ²		711	2.00			
A2/A1=	1.2	<4 ok		L=	7.00	in		
φcPp=	875	ок		f _{pu} =	1.3	ksi		
				t _{min} =	1.96	in.		

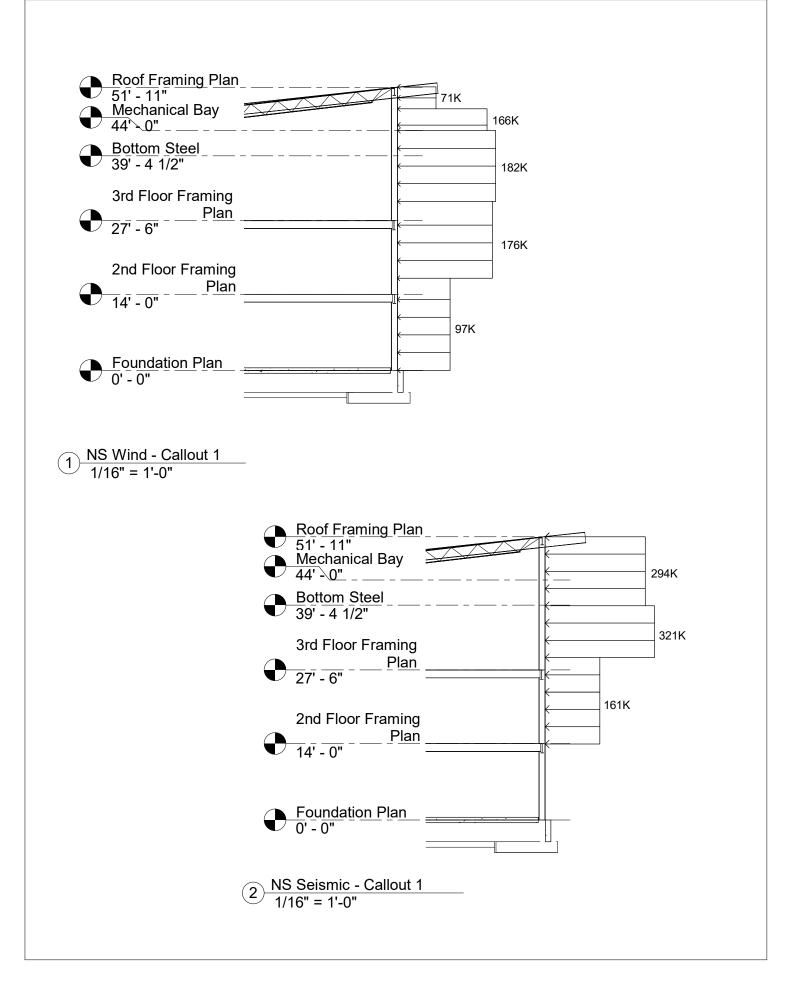
Coulmn: B1

USE:

PL2in. x 22in. X 22in.


W= B= L= Joist S= Span Condition=	461 111 360 7.5 3	plf ft ft ft	Deck: 36/7 1.5 20 side lap 10 Support Fastners: 3/4 puddle welds SideLap Fastners : welded
Deck=	1.5B 20		
K ₁ =	0.068		
K ₂ =	1056		
D _B =	97		
G'=	115	K/in	
ΔCL=	0.586	in	
R=	83000	lbs	
S=	748	plf	


Wall Studs	(Curtian	Wall)
------------	----------	-------


Area NS=	1872	20 ft ²	
Area EW=	577	'2 ft ²	CW Metal Stud Catalog
V NS=	69	1	600S200-68 (33ksi, CP60)
VEW=	18	32	
Psf NS=		1 psf	
Psf EW=	31.5	i3 psf	
CONTROL=	4	0 psf	
			OWSJ
Roof Dead=	47	psf	
Roof Snow=	30	psf	28K12 is refflected in the plans this is WRONG!!
Span=	43	ft	
Trib W=	7.5	ft	Eonmical joist guide for factored load LRFD
Factored LOAD	783	plf	USE: 36LH13 Load Capacity 876plf

-

Shear Conection					
V @ conection=	44	4 kip		PL1/4in/x4.5in.x12in.	
Standard Bolt: Loading:	3/4 S	in.		4 3/4in. Bolts @ 2.5in. O.C. 3/16in. Fillet weld	
Shear φRn=	17.9	kips	(7-1)		
Bearing & Tear Out φRn=	134	kips	(7-4)		
Plate thickness=	0.25	in.			
PlateCapacit=	52.2	kips	(10-10a)		

Concrete Footings

Footing	Pressure (P), psf	A_foot, ft^2	sqrt(area), ft	inches
A1	355500	96.08	9.80	118
A3	443200	119.78	10.94	131
B1	472100	127.59	11.30	136
B3	615700	166.41	12.90	155
Allowable Pressure (q)		4000	psf	
Depth of footing (t_foot)		2	ft	
p_foot	(t_foot * 150 lb/ft^3)	300	psf	
q_net	(q-p_foot)	3700	psf	